TY - JOUR
T1 - Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film
AU - Hechster, Elad
AU - Shapiro, Arthur
AU - Lifshitz, Efrat
AU - Sarusi, Gabby
N1 - Publisher Copyright:
© 2016 Author(s).
PY - 2016/7/1
Y1 - 2016/7/1
N2 - Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer's surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film's thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas' dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.
AB - Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer's surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film's thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas' dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.
UR - http://www.scopus.com/inward/record.url?scp=84979937599&partnerID=8YFLogxK
U2 - 10.1063/1.4960013
DO - 10.1063/1.4960013
M3 - Article
AN - SCOPUS:84979937599
SN - 2158-3226
VL - 6
JO - AIP Advances
JF - AIP Advances
IS - 7
M1 - 075117
ER -