Options for Solid Point Target Detection in Hyperspectral Data

Eliad Yurkovetsky, Stanley R. Rotman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Adaptive target detection algorithms need to estimate parameters before the actual calculation of the metric for target detection. For solid subpixel targets in hyperspectral data, we consider two algorithms for effective detection. The first algorithm uses explicitly only background estimation; the second estimates both the background and the target fraction in the pixel. We compare the performance of each algorithm; we also consider the need to alter the estimated covariance matrix based on the estimated target fraction.

Original languageEnglish
Title of host publicationIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers
Pages2270-2273
Number of pages4
ISBN (Electronic)9798350320107
DOIs
StatePublished - 1 Jan 2023
Event2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States
Duration: 16 Jul 202321 Jul 2023

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2023-July

Conference

Conference2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
Country/TerritoryUnited States
CityPasadena
Period16/07/2321/07/23

Keywords

  • covariance matrix
  • hyperspectral
  • point target detection

ASJC Scopus subject areas

  • Computer Science Applications
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Options for Solid Point Target Detection in Hyperspectral Data'. Together they form a unique fingerprint.

Cite this