Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil

Lital Davidi, Eyal Shimoni, Inna Khozin-Goldberg, Ada Zamir, Uri Pick

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

The halotolerant microalgae Dunaliella bardawil accumulates under nitrogen deprivation two types of lipid droplets: plastoglobuli rich in β-carotene (βC-plastoglobuli) and cytoplasmatic lipid droplets (CLDs). We describe the isolation, composition, and origin of these lipid droplets. Plastoglobuli contain β-carotene, phytoene, and galactolipids missing in CLDs. The two preparations contain different lipid-associated proteins: major lipid droplet protein in CLD and the Prorich carotene globule protein in βC-plastoglobuli. The compositions of triglyceride (TAG) molecular species, total fatty acids, and sn-1+3 and sn-2 positions in the two lipid pools are similar, except for a small increase in palmitic acid in plastoglobuli, suggesting a common origin. The formation of CLD TAG precedes that of βC-plastoglobuli, reaching a maximum after 48 h of nitrogen deprivation and then decreasing. Palmitic acid incorporation kinetics indicated that, at early stages of nitrogen deprivation, CLD TAG is synthesized mostly from newly formed fatty acids, whereas in βC-plastoglobuli, a large part of TAG is produced from fatty acids of preformed membrane lipids. Electron microscopic analyses revealed that CLDs adhere to chloroplast envelope membranes concomitant with appearance of small βC-plastoglobuli within the chloroplast. Based on these results, we propose that CLDs in D. bardawil are produced in the endoplasmatic reticulum, whereas βC-plastoglobuli are made, in part, from hydrolysis of chloroplast membrane lipids and in part, by a continual transfer of TAG or fatty acids derived from CLD.

Original languageEnglish
Pages (from-to)2139-2156
Number of pages18
JournalPlant Physiology
Volume164
Issue number4
DOIs
StatePublished - 1 Jan 2014

Fingerprint

Dive into the research topics of 'Origin of β-carotene-rich plastoglobuli in <i>Dunaliella bardawil</i>'. Together they form a unique fingerprint.

Cite this