Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants

Haiji Qiu, Xiang Zhu, Haoliang Wan, Li Xu, Qinghua Zhang, Pengyi Hou, Ziquan Fan, Yi Lyu, Dejiang Ni, Björn Usadel, Alisdair R. Fernie, Weiwei Wen

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

As one of the most popular beverages globally, tea has enormous economic, cultural, and medicinal importance that necessitates a comprehensive metabolomics study of this species. In this study, a large-scale targeted metabolomics analysis on two types of leaf tissues of nine tea cultivars from five representative geographical origins within China was carried out using the liquid chromatography-mass spectrometry technique. RNA-seq-based transcriptomic analysis was in parallel conducted on the same samples, and gene expression and metabolic differentiation between tissues as well as between the multiple tea cultivars were investigated. The data obtained provide an accessible resource for further studies of naturally occurring metabolic variation of tea plants, which will aid in thoroughly interpreting the underlying genetic and molecular mechanisms of biosynthesis of specialized metabolites in this critical species. Candidate genes including a transcription factor (CsMYB5-like), which were highly correlated with both the content of flavonoids and the expression level of genes participating in the phenylpropanoid and flavonoid biosynthesis pathway, were identified as potential targets for quality improvement of tea.

Original languageEnglish
Pages (from-to)5483-5495
Number of pages13
JournalJournal of Agricultural and Food Chemistry
Volume68
Issue number19
DOIs
StatePublished - 13 May 2020
Externally publishedYes

Keywords

  • Camellia sinensis
  • metabolomics
  • quality improvement
  • specialized metabolism
  • transcriptome

ASJC Scopus subject areas

  • General Chemistry
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants'. Together they form a unique fingerprint.

Cite this