Particulate metal exposures induce plasma metabolome changes in a commuter panel study

Chandresh Nanji Ladva, Rachel Golan, Donghai Liang, Roby Greenwald, Douglas I. Walker, Karan Uppal, Amit U. Raysoni, Vi Linh Tran, Tianwei Yu, W. Dana Flanders, Gary W. Miller, Dean P. Jones, Jeremy A. Sarnat

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


Introduction Advances in liquid chromatography-mass spectrometry (LC-MS) have enabled high-resolution metabolomics (HRM) to emerge as a sensitive tool for measuring environmental exposures and corresponding biological response. Using measurements collected as part of a large, panel-based study of car commuters, the current analysis examines in-vehicle air pollution concentrations, targeted inflammatory biomarker levels, and metabolomic profiles to trace potential metabolic perturbations associated with on-road traffic exposures. Methods A 60-person panel of adults participated in a crossover study, where each participant conducted a highway commute and randomized to either a side-street commute or clinic exposure session. In addition to in-vehicle exposure characterizations, participants contributed pre- and post-exposure dried blood spots for 2-hr changes in targeted proinflammatory and vascular injury biomarkers and 10-hr changes in the plasma metabolome. Samples were analyzed on a Thermo QExactive MS system in positive and negative electrospray ionization (ESI) mode. Data were processed and analyzed in R using apLCMS, xMSanalyzer, and limma. Features associated with environmental exposures or biological endpoints were identified with a linear mixed effects model and annotated through human metabolic pathway analysis in mummichog. Results HRM detected 10-hr perturbations in 110 features associated with in-vehicle, particulate metal exposures (Al, Pb, and Fe) which reflect changes in arachidonic acid, leukotriene, and tryptophan metabolism. Two-hour changes in proinflammatory biomarkers hs-CRP, IL-6, IL-8, and IL-1β were also associated with 10-hr changes in the plasma metabolome, suggesting diverse amino acid, leukotriene, and antioxidant metabolism effects. A putatively identified metabolite, 20-OH-LTB4, decreased after in-vehicle exposure to particulate metals, suggesting a subclinical immune response. Conclusions Acute exposures to traffic-related air pollutants are associated with broad inflammatory response, including several traditional markers of inflammation.

Original languageEnglish
Article numbere0203468
JournalPLoS ONE
Issue number9
StatePublished - 1 Sep 2018

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Particulate metal exposures induce plasma metabolome changes in a commuter panel study'. Together they form a unique fingerprint.

Cite this