Abstract
We study the problem of treasure hunt in a graph by a mobile agent. The nodes in the graph are anonymous and the edges at any node v of degree deg(v) are labeled arbitrarily as 0,1,…,deg(v)−1. A mobile agent, starting from a node, must find a stationary object, called treasure that is located on an unknown node at a distance D from its initial position. The agent finds the treasure when it reaches the node where the treasure is present. The time of treasure hunt is defined as the number of edges the agent visits before it finds the treasure. The agent does not have any prior knowledge about the graph or the position of the treasure. An Oracle, that knows the graph, the initial position of the agent, and the position of the treasure, places some pebbles on the nodes, at most one per node, of the graph to guide the agent towards the treasure. We target to answer the question: what is the fastest possible treasure hunt algorithm regardless of the number of pebbles are placed? We show an algorithm that uses O(DlogΔ) pebbles to find the treasure in a graph G in time O(DlogΔ), where Δ is the maximum degree of a node in G and D is the distance from the initial position of the agent to the treasure. We show a matching lower bound of Ω(DlogΔ) on time of the treasure hunt using any number of pebbles.
Original language | English |
---|---|
Pages (from-to) | 61-80 |
Number of pages | 20 |
Journal | Theoretical Computer Science |
Volume | 922 |
DOIs | |
State | Published - 24 Jun 2022 |
Externally published | Yes |
Keywords
- Anonymous graph
- Deterministic algorithms
- Mobile agent
- Pebbles
- Treasure hunt
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science