Percolation-type description of the metal-insulator transition in two dimensions

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

A simple non-interacting-electron model, combining local quantum tunneling via quantum point contacts and global classical percolation, is introduced [Y. Meir, Phys. Rev. Lett. 83 (1999) 3506] in order to describe the observed "metal-insulator transition" in two dimensions. Here, based upon that model, a two-species-percolation scaling theory is introduced and compared to the experimental data. It is shown that many features of the experiments, such as the exponential dependence of the resistance on temperature on the metallic side, the linear dependence of the exponent on density, the e2/h scale of the critical resistance, the quenching of the metallic phase by a parallel magnetic field and the non-monotonic dependence of the critical density on a perpendicular magnetic field, can be naturally explained by the model. Moreover, details such as the non-monotonic dependence of the resistance on temperature or the inflection point of the resistance vs. parallel magnetic field are also a natural consequence of the theory. The calculated parallel field dependence of the critical density agrees excellently with experiments, and is used to deduce an experimental value of the confining energy in the vertical direction.

Original languageEnglish
Pages (from-to)391-403
Number of pages13
JournalPhysica A: Statistical Mechanics and its Applications
Volume302
Issue number1-4
DOIs
StatePublished - 15 Dec 2001
EventInternational Workshop on Frontiers in the Physics of Complex Systems - Ramat-Gan, Israel
Duration: 25 Mar 200128 Mar 2001

ASJC Scopus subject areas

  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Percolation-type description of the metal-insulator transition in two dimensions'. Together they form a unique fingerprint.

Cite this