Perovskite/Silicon Tandem Solar Cells: Effect of Luminescent Coupling and Bifaciality

Klaus Jäger, Peter Tillmann, Eugene A. Katz, Christiane Becker

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The power conversion efficiency of the market-dominating silicon photovoltaics approaches its theoretical limit. Bifacial solar operation with harvesting additional light impinging on the module back and the perovskite/silicon tandem device architecture are among the most promising approaches for further increasing the energy yield from a limited area. Herein, the energy output of perovskite/silicon tandem solar cells in monofacial and bifacial operation is calculated, for the first time considering luminescent coupling (LC) between two sub-cells. For energy yield calculations, idealized solar cells are studied at both standard testing as well as realistic weather conditions in combination with a detailed illumination model for periodic solar panel arrays. Typical experimental photoluminescent quantum yield values reveal that more than 50% of excess electron–hole pairs in the perovskite top cell can be utilized by the silicon bottom cell by means of LC. As a result, LC strongly relaxes the constraints on the top-cell bandgap in monolithic tandem devices. In combination with bifacial operation, the optimum perovskite bandgap shifts from 1.71 eV to the range 1.60–1.65 eV, where already high-quality perovskite materials exist. The results are very important for developing optimal perovskite materials for tandem solar cells.

Original languageEnglish
Article number2000628
JournalSolar RRL
Volume5
Issue number3
DOIs
StatePublished - 1 Mar 2021

Keywords

  • energy yields
  • luminescent coupling
  • perovskite/silicon tandem solar cells

Fingerprint

Dive into the research topics of 'Perovskite/Silicon Tandem Solar Cells: Effect of Luminescent Coupling and Bifaciality'. Together they form a unique fingerprint.

Cite this