Abstract
Since the discovery of the inducible form of prostaglandin (PG) H synthase (PGHS), PGHS-2, considerable effort has been made to design selective inhibitors of this isozyme. N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398) and 5-bromo-2-(4-fluorophenyl)-3-(4-methylsulfonyl) thiophene (DuP-697) have been shown to interact reversibly with PGHS-1, while irreversibly inhibiting PGHS-2 in a time-dependent manner. In the present study we have tested the effects of DuP-697 and NS-398 on the activity of PGHS-1 and further explored the interactions between these agents and the inhibition of PGHS-1 by aspirin, indomethacin and ibuprofen. Three independent experimental systems, namely bovine aortic endothelial cells (BAEC), human fibroblasts and ram seminal vesicle microsomes were used to investigate the effects of DuP-697 and NS-398 on PGHS-1. The results show that DuP-697 and NS-398, at concentrations ranges which do not inhibit PGHS-1 activity, significantly attenuated the inhibition of PGHS-1 that was caused by aspirin and indomethacin. The same concentrations of DuP-697 and NS-398 did not affect the inhibition of PGHS-1 that was induced by the competitive reversible inhibitors ibuprofen and naproxen. Similar effects of DuP-697 and NS-393 were obtained with ram seminal vesicle microsomes. These results suggest that PGHS-2 inhibitors DuP-697 and NS-398 possibly interact with PGHS-1 at a site different from the enzyme's catalytic site, thus causing attenuation of PGHS-1 inhibition by aspirin and indomethacin without altering PGHS-1 basal activity or the ibuprofen-induced inhibition. Copyright (C) 1999 Elsevier Science B.V.
Original language | English |
---|---|
Pages (from-to) | 127-137 |
Number of pages | 11 |
Journal | Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids |
Volume | 1440 |
Issue number | 1 |
DOIs | |
State | Published - 25 Aug 1999 |
Keywords
- Aspirin
- DuP-697
- Endothelial cell
- Human fibroblast
- Ibuprofen
- Indomethacin
- NS-398
- Naproxen
- PGHS-1
- PGHS-2
- Ram seminal vesicle microsome
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology