Photoacclimation processes in phytoplankton: Mechanisms, consequences, and applications

Zvy Dubinsky, Noga Stambler

Research output: Contribution to journalArticlepeer-review

193 Scopus citations


In nature and in the laboratory, phytoplankton cells are exposed to fast and extreme fluctuations in light intensity. These include diel and seasonal changes in irradiance, and changes stemming from vertical mixing over the light field. In algal mass cultures and photobioreactors, similar changes take place as cultures grow denser and as cells are mixed rapidly in the system. To survive supraoptimal, free-radical-generating irradiance levels as well as prolonged exposure to dim light, phytoplankton species are capable of photoacclimation. Under low light, light-harvesting pigments such as phycobilins, chlorophylls, fucoxanthin and peridinin increase all the way to optically becoming black cells. The same pigments decrease under high light, resulting in cells being rather transparent. The opposite takes place with the photoprotective pigmentsβ-carotene and astaxanthin and the elements of the xanthophyll cycle, all of which increase whenever cells are exposed to high irradiance levels, concomitant with enhanced activity of the antioxidant enzymes catalase, superoxydismutase, and peroxidase. These processes are complemented by up to 5-fold changes in RUBISCO per photosystem unit (PSU) levels, and parallel changes in light-saturated photosynthetic rates. Thus, light-harvesting and utilization efficiencies are maximized under low light, whereas photosynthetic carbon assimilation and throughput rates reach their peak values whenever light is sufficiently high. Maximal photosynthesis and growth rates have to be matched by correspondingly high respiration rates. Photoacclimation can be used to optimize biomass and target product yields in biotechnological applications.

Original languageEnglish
Pages (from-to)163-176
Number of pages14
JournalAquatic Microbial Ecology
Issue number2-3
StatePublished - 22 Sep 2009
Externally publishedYes


  • Algae
  • Photoacclimation
  • Photoadaptation
  • Photosynthesis
  • Phytoplankton
  • Pigments
  • Xanthophyll cycle

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Aquatic Science


Dive into the research topics of 'Photoacclimation processes in phytoplankton: Mechanisms, consequences, and applications'. Together they form a unique fingerprint.

Cite this