Photovoltaic concentration at ultra-high flux

    Research output: Contribution to journalConference articlepeer-review

    Abstract

    Experimental results generated with novel miniature fiber-optic concentrators and commercial tandem III-V concentrator solar cells are reported, including (1) measured power densities up to 10,000 suns, (2) solar cell efficiencies in excess of 30% and (3) totally passive cooling. Mini-dish concentrators (a) generate uniform and individualized cell illumination, (b) allow assembly from readily available elements, and (c) are devoid of chromatic aberration. Measurements include the sensitivity of conversion efficiency to (i) power input, (ii) extreme flux inhomogeneities and (iii) the modified spectrum from fiber-optic concentrators. The weak sensitivity of cell performance to acute non-uniformities in flux map is addressed with a relatively simple model that regards the cell as an effective parallel connection of its uniformly irradiated areal elements. Our findings bode favorably for the feasibility of such concentrator designs at concentration levels as high as thousands of suns.

    Original languageEnglish
    Article number27
    Pages (from-to)227-236
    Number of pages10
    JournalProceedings of SPIE - The International Society for Optical Engineering
    Volume5529
    DOIs
    StatePublished - 1 Dec 2004
    EventNonimaging Optics and Efficient Illumination Systems - Denver, CO, United States
    Duration: 2 Aug 20044 Aug 2004

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Condensed Matter Physics
    • Computer Science Applications
    • Applied Mathematics
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'Photovoltaic concentration at ultra-high flux'. Together they form a unique fingerprint.

    Cite this