Physics and the measurement of continuous variables

Research output: Contribution to journalArticlepeer-review

Abstract

This paper addresses the doubts voiced by Wigner about the physical relevance of the concept of geometrical points by exploiting some facts known to all but honored by none: Almost all real numbers are transcendental; the explicit representation of any one will require an infinite amount of physical resources. An instrument devised to measure a continuous real variable will need a continuum of internal states to achieve perfect resolution. Consequently, a laboratory instrument for measuring a continuous variable in a finite time can report only a finite number of values, each of which is constrained to be a rational number. It does not matter whether the variable is classical or quantum-mechanical. Now, in von Neumann's measurement theory (von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, [1955]), an operator A with a continuous spectrum-which has no eigenvectors-cannot be measured, but it can be approximated by operators with discrete spectra which are measurable. The measurable approximant F(A) is not canonically determined; it has to be chosen by the experimentalist. It is argued that this operator can always be chosen in such a way that Sewell's results (Sewell in Rep. Math. Phys. 56: 271, [2005]; Sewell, Lecture given at the J.T. Lewis Memorial Conference, Dublin, [2005]) on the measurement of a hermitian operator on a finite-dimensional vector space (described in Sect. 3.2) constitute an adequate resolution of the measurement problem in this theory. From this follows our major conclusion, which is that the notion of a geometrical point is as meaningful in nonrelativistic quantum mechanics as it is in classical physics. It is necessary to be sensitive to the fact that there is a gap between theoretical and experimental physics, which reveals itself tellingly as an error inherent in the measurement of a continuous variable.

Original languageEnglish
Pages (from-to)301-316
Number of pages16
JournalFoundations of Physics
Volume38
Issue number4
DOIs
StatePublished - 1 Jan 2008

Keywords

  • Measurement of continuous variables
  • Quantum measurement theory
  • Wave-packet reduction

ASJC Scopus subject areas

  • Philosophy
  • General Physics and Astronomy
  • History and Philosophy of Science

Fingerprint

Dive into the research topics of 'Physics and the measurement of continuous variables'. Together they form a unique fingerprint.

Cite this