TY - JOUR
T1 - Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms
AU - Gollop, N.
AU - Damri, B.
AU - Chipman, D. M.
AU - Barak, Z.
PY - 1990/1/1
Y1 - 1990/1/1
N2 - Acetohydroxy acid synthase (AHAS; EC 4.1.3.18) catalyzes the following two parallel, physiologically important reactions: condensation of two molecules of pyruvate to form acetolactate (AL), in the pathway to valine and leucine, and condensation of pyruvate plus 2-ketobutyrate to form acetohydroxybutyrate (AHB), in the pathway to isoleucine. We have determined the specificity ratio R with regard to these two reactions (where V(AHB) and V(AL) are rates of formation of the respective products) as follows: V(AHB)/V(AL) = R [2-ketobutyrate]/[pyruvate] for 14 enzymes from 10 procaryotic and eucaryotic organisms. Each organism considered has at least one AHAs of R > 20, and some appear to contain but a single biosynthetic AHAS. The implications of this for the design of the pathway are discussed. The selective pressure for high specificity for 2-ketobutyrate versus pyruvate implies that the 2-ketobutyrate concentration is much lower than the pyruvate concentration in all these organisms. It seems important for 2-ketobutyrate levels to be relatively low to avoid a variety of metabolic interferences. These results also reinforce the conclusion that biosynthetic AHAS isozymes of low R (1 to 2) are a special adaptation for heterotrophic growth on certain poor carbon sources. Two catabolic 'pH 6 AL-synthesizing enzymes' are shown to be highly specific for AL formation only (R < 0.1).
AB - Acetohydroxy acid synthase (AHAS; EC 4.1.3.18) catalyzes the following two parallel, physiologically important reactions: condensation of two molecules of pyruvate to form acetolactate (AL), in the pathway to valine and leucine, and condensation of pyruvate plus 2-ketobutyrate to form acetohydroxybutyrate (AHB), in the pathway to isoleucine. We have determined the specificity ratio R with regard to these two reactions (where V(AHB) and V(AL) are rates of formation of the respective products) as follows: V(AHB)/V(AL) = R [2-ketobutyrate]/[pyruvate] for 14 enzymes from 10 procaryotic and eucaryotic organisms. Each organism considered has at least one AHAs of R > 20, and some appear to contain but a single biosynthetic AHAS. The implications of this for the design of the pathway are discussed. The selective pressure for high specificity for 2-ketobutyrate versus pyruvate implies that the 2-ketobutyrate concentration is much lower than the pyruvate concentration in all these organisms. It seems important for 2-ketobutyrate levels to be relatively low to avoid a variety of metabolic interferences. These results also reinforce the conclusion that biosynthetic AHAS isozymes of low R (1 to 2) are a special adaptation for heterotrophic growth on certain poor carbon sources. Two catabolic 'pH 6 AL-synthesizing enzymes' are shown to be highly specific for AL formation only (R < 0.1).
UR - http://www.scopus.com/inward/record.url?scp=0025346177&partnerID=8YFLogxK
U2 - 10.1128/jb.172.6.3444-3449.1990
DO - 10.1128/jb.172.6.3444-3449.1990
M3 - Article
C2 - 2345154
AN - SCOPUS:0025346177
SN - 0021-9193
VL - 172
SP - 3444
EP - 3449
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 6
ER -