Planar bichromatic bottleneck spanning trees

A. Karim Abu-Affash, Sujoy Bhore, Paz Carmi, Joseph S.B. Mitchell

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Given a set P of n red and blue points in the plane, a planar bichromatic spanning tree of P is a geometric spanning tree of P, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree T, such that the length of the longest edge in T is minimized. In this paper, we show that this problem is NP-hard for points in general position. Our main contribution is a polynomial-time (8√2)-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck λ can be converted to a planar bichromatic spanning tree of bottleneck at most 8√2λ.

Original languageEnglish
Title of host publication28th Annual European Symposium on Algorithms, ESA 2020
EditorsFabrizio Grandoni, Grzegorz Herman, Peter Sanders
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771627
DOIs
StatePublished - 1 Aug 2020
Event28th Annual European Symposium on Algorithms, ESA 2020 - Virtual, Pisa, Italy
Duration: 7 Sep 20209 Sep 2020

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume173
ISSN (Print)1868-8969

Conference

Conference28th Annual European Symposium on Algorithms, ESA 2020
Country/TerritoryItaly
CityVirtual, Pisa
Period7/09/209/09/20

Keywords

  • Approximation Algorithms
  • Bottleneck Spanning Tree
  • NP-Hardness

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Planar bichromatic bottleneck spanning trees'. Together they form a unique fingerprint.

Cite this