TY - JOUR
T1 - Plant growth promoting strain Bacillus cereus (RCS-4 MZ520573.1) enhances phytoremediation potential of Cynodon dactylon L. in distillery sludge
AU - Tripathi, Sonam
AU - Yadav, Sangeeta
AU - Sharma, Pooja
AU - Purchase, Diane
AU - Syed, Asad
AU - Chandra, Ram
N1 - Publisher Copyright:
© 2022
PY - 2022/5/15
Y1 - 2022/5/15
N2 - Elevated levels of physico-chemical pollution including organic pollutants, metals and metalloids were detected in distillery sludges despite of the anaerobic digestion treatment prior to disposal. The concentrations of the metals were (in mg kg−1): Fe (400.98 ± 3.11), Zn (17.21 ± 0.54), Mn (8.32 ± 0.42), Ni (8.00 ± 0.98), Pb (5.09 ± 0.43), Cr (4.00 ± 0.98), and Cu (3.00 ± 0.10). An invasive grass species, Cynodon dactylon L., demonstrated its ability to remediate the distillery waste sludge (DWS) in the field study. All the physico-chemical parameters of the sludge significantly improved (up to 70–75%) in the presence of Cynodon dactylon L. (p < 0.001) than the control with no plant growth. The highest phytoremediation capacity was associated with the uptake of Fe in the root and shoot. Sludge samples collected near the rhizosphere also showed lower amount of organic compounds compared to control sludge samples. Metal resistant Bacillus cereus (RCS-4 MZ520573.1) was isolated from the rhizosphere of Cynodon dactylon L. and showed potential to enhance the process of phytoremediation via plant growth promoting activities such as production of high level of ligninolytic enzymes: manganese peroxidase (35.98 U), lignin peroxidase (23.98 U) and laccase (12.78 U), indole acetic acid (45.87(mgL−1), phosphatase activity (25.76 mg L−1) and siderophore production (23.09 mg L−1). This study presents information on the performance of Cynodon dactylon L., an abundant invasive perennial grass species and its associated plant growth promoting rhizobacteria demonstrated good capacity to remediate and restore contaminated soil contained complex organic and inorganic pollutants, they could be integrated into the disposal system of distillery sludge to improve the treatment efficiency.
AB - Elevated levels of physico-chemical pollution including organic pollutants, metals and metalloids were detected in distillery sludges despite of the anaerobic digestion treatment prior to disposal. The concentrations of the metals were (in mg kg−1): Fe (400.98 ± 3.11), Zn (17.21 ± 0.54), Mn (8.32 ± 0.42), Ni (8.00 ± 0.98), Pb (5.09 ± 0.43), Cr (4.00 ± 0.98), and Cu (3.00 ± 0.10). An invasive grass species, Cynodon dactylon L., demonstrated its ability to remediate the distillery waste sludge (DWS) in the field study. All the physico-chemical parameters of the sludge significantly improved (up to 70–75%) in the presence of Cynodon dactylon L. (p < 0.001) than the control with no plant growth. The highest phytoremediation capacity was associated with the uptake of Fe in the root and shoot. Sludge samples collected near the rhizosphere also showed lower amount of organic compounds compared to control sludge samples. Metal resistant Bacillus cereus (RCS-4 MZ520573.1) was isolated from the rhizosphere of Cynodon dactylon L. and showed potential to enhance the process of phytoremediation via plant growth promoting activities such as production of high level of ligninolytic enzymes: manganese peroxidase (35.98 U), lignin peroxidase (23.98 U) and laccase (12.78 U), indole acetic acid (45.87(mgL−1), phosphatase activity (25.76 mg L−1) and siderophore production (23.09 mg L−1). This study presents information on the performance of Cynodon dactylon L., an abundant invasive perennial grass species and its associated plant growth promoting rhizobacteria demonstrated good capacity to remediate and restore contaminated soil contained complex organic and inorganic pollutants, they could be integrated into the disposal system of distillery sludge to improve the treatment efficiency.
KW - Bacillus cereus
KW - Cynodon dactylon L
KW - Ligninolytic enzyme
KW - Metal accumulation
KW - Pollution reduction
UR - http://www.scopus.com/inward/record.url?scp=85122911185&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2022.112709
DO - 10.1016/j.envres.2022.112709
M3 - Article
C2 - 35032541
AN - SCOPUS:85122911185
SN - 0013-9351
VL - 208
JO - Environmental Research
JF - Environmental Research
M1 - 112709
ER -