TY - JOUR
T1 - Point-contact spectroscopy of hopping transport
T2 - Effects of a magnetic field
AU - Kozub, V. I.
AU - Zyuzin, A. A.
AU - Entin-Wohlman, O.
AU - Aharony, A.
AU - Galperin, Y. M.
AU - Vinokur, V.
PY - 2007/5/8
Y1 - 2007/5/8
N2 - The conductance of a point contact between two hopping insulators is expected to be dominated by the individual localized states in its vicinity. Here, we study the additional effects due to an external magnetic field. Combined with the measured conductance, the measured magnetoresistance provides detailed information on these states (e.g., their localization length, the energy difference, and the hopping distance between them). We also calculate the statistics of this magnetoresistance, which can be collected by changing the gate voltage in a single device. Since the conductance is dominated by the quantum interference of particular mesoscopic structures near the point contact, it is predicted to exhibit Aharonov-Bohm oscillations, which yield information on the geometry of these structures. These oscillations also depend on local spin accumulation and correlations, which can be modified by the external field. Finally, we also estimate the mesoscopic Hall voltage due to these structures.
AB - The conductance of a point contact between two hopping insulators is expected to be dominated by the individual localized states in its vicinity. Here, we study the additional effects due to an external magnetic field. Combined with the measured conductance, the measured magnetoresistance provides detailed information on these states (e.g., their localization length, the energy difference, and the hopping distance between them). We also calculate the statistics of this magnetoresistance, which can be collected by changing the gate voltage in a single device. Since the conductance is dominated by the quantum interference of particular mesoscopic structures near the point contact, it is predicted to exhibit Aharonov-Bohm oscillations, which yield information on the geometry of these structures. These oscillations also depend on local spin accumulation and correlations, which can be modified by the external field. Finally, we also estimate the mesoscopic Hall voltage due to these structures.
UR - http://www.scopus.com/inward/record.url?scp=34347342747&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.75.205311
DO - 10.1103/PhysRevB.75.205311
M3 - Article
AN - SCOPUS:34347342747
SN - 1098-0121
VL - 75
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 20
M1 - 205311
ER -