Poly (lactide-co-glycolide) nano-encapsulation of chelidonine, an active bioingredient of greater celandine (Chelidonium majus), enhances its ameliorative potential against cadmium induced oxidative stress and hepatic injury in mice

Avijit Paul, Jayeeta Das, Sreemanti Das, Asmita Samadder, Anisur Rahman Khuda-Bukhsh

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

This study evaluates the possible protective potentials of chelidonine and its poly lactide-co-glycolide (PLGA) encapsulated nano-form against cadmium chloride (CdCl2) induced oxidative stress and hepatotoxicity in mice, ex vivo and in vivo. Acute exposure to CdCl2 (1.0mg/kg b.w; i.p., twice a week for 30 days) generated oxidative stress in mice through accumulation of reactive oxygen species and increased lipid peroxidation, and levels of certain liver marker enzymes (ALT, AST, ALP) with decrease in levels of GSH and certain other antioxidant enzymes (SOD, CAT, GR) in liver. Treatment with nano-chelidonine for 30 days after CdCl2 intoxication significantly reduced oxidative stress and lipid peroxidation and restored levels of GSH, cholesterol, triglyceride and antioxidant enzymes, showing ameliorative changes in histopathology of liver. Expression pattern of certain inflammatory and apoptotic signal proteins also indicated better hepato-protective abilities of nano-chelidonine, making it a more suitable protective drug than chelidonine against cadmium toxicity in mice.

Original languageEnglish
Pages (from-to)937-947
Number of pages11
JournalEnvironmental Toxicology and Pharmacology
Volume36
Issue number3
DOIs
StatePublished - 17 Sep 2013
Externally publishedYes

Keywords

  • Cadmium
  • Chelidonine
  • Hepatotoxicity
  • Oxidative stress
  • PLGA nano-encapsulation
  • Signal proteins

ASJC Scopus subject areas

  • Toxicology
  • Pharmacology
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Poly (lactide-co-glycolide) nano-encapsulation of chelidonine, an active bioingredient of greater celandine (Chelidonium majus), enhances its ameliorative potential against cadmium induced oxidative stress and hepatic injury in mice'. Together they form a unique fingerprint.

Cite this