TY - JOUR
T1 - Polyoma middle T antigen or v-src desensitizes human epidermal growth factor receptor function and interference by a monensin-resistant mutation in mouse Balb/3T3 cells
AU - Ono, Mayumi
AU - Nakayama, Yoshifumi
AU - Princler, Gerald
AU - Gopas, Jacob
AU - Kung, Hsiang Fu
AU - Kuwano, Michihiko
N1 - Funding Information:
We thank Dr. D. Longo for critical reading of this manuscript. We acknowledge the National Cancer Institute for allocation of computing time and staff support at the Advanced Scientific Computing Laboratory of the Frederick Cancer Research Facility and Dr. T. D. Co-peland for technical assistance. This study was supported by the NC1 * JFCR Research Training Program to M.O., and also by the Monbusho International Scientific Research Program, Japan. We thank Dr. M. Rosner for rodent EGF receptor probe and fruitful discussion. We thank T. Umeda for preparing this manuscript.
PY - 1992/1/1
Y1 - 1992/1/1
N2 - Epidermal growth factor (EGF)-induced down-regulation of its receptor is an obligatory pathway for cellular regulation of EGF-specific receptor (EGF-R) in normal and malignant cells. BNER4 cells are mouse Balb/3T3 cells transfected with the human EGF-R complementary DNA (cDNA). Polyoma middle T antigen-transfectants of BNER4, B4/MT-2, B4/MT-13, B4/MT-23, and B4/MT-24, showed diminished down-regulation of cell surface human EGF-R in response to EGF relative to the parental BNER4 cells. Also, the v-src-transfectants B4/SRC-13 and B4/SRC-24 showed much less down-regulation than BNER4 cells, whereas H-ras-transfectants of BNER4, B4/RAS-24 and B4/RAS-25, showed EGF-induced down-regulation of the cell surface EGF-R similar to that of BNER4. EGF induced DNA synthesis more than 20-fold in BNER4, but induced only about a 1.5- to 6-fold increase in the middle T antigen- and v-src-transfectants. EGF-Rs of the middle T antigen-transfectants were metabolically stable in the presence of EGF in comparison with their parental BNER4 cells. EGF-Rs of BNER4 cells degraded with half-lives of about 2 h in the presence of EGF, but those of the middle T antigen transformants were found to be highly stabilized in the presence of EGF. On the other hand, transfection with polyoma middle T antigen (MTAg) cDNA causes malignant transformation of Balb/3T3 cells, but not its monensin (an ionophoric antibiotic)-resistant mutant MO-5 cells, which have no significant EGF binding activity. Transfection of human EGF-R cDNA into MO-5 leads to the expression of high levels of human EGF-R in MNER31. Unlike the polyoma MTAg transfectants of BNER4, EGF-R in polyoma MTAg cDNA-transfectants into MNER31, M31/MT-13 and M31/MT-14, were down-regulated to levels similar to those of their parental MNER31. Exposure to EGF induced a more than 10-fold increase in DNA synthesis of quiescent BNER4, MNER31, M31/MT-13, and M31/MT-14 cells. Polyoma middle T antigen or v-src appears to modulate EGF-induced down-regulation of EGF-R, possibly through interaction of the receptor with the viral oncogenes, and this interaction may be altered in the mutant.
AB - Epidermal growth factor (EGF)-induced down-regulation of its receptor is an obligatory pathway for cellular regulation of EGF-specific receptor (EGF-R) in normal and malignant cells. BNER4 cells are mouse Balb/3T3 cells transfected with the human EGF-R complementary DNA (cDNA). Polyoma middle T antigen-transfectants of BNER4, B4/MT-2, B4/MT-13, B4/MT-23, and B4/MT-24, showed diminished down-regulation of cell surface human EGF-R in response to EGF relative to the parental BNER4 cells. Also, the v-src-transfectants B4/SRC-13 and B4/SRC-24 showed much less down-regulation than BNER4 cells, whereas H-ras-transfectants of BNER4, B4/RAS-24 and B4/RAS-25, showed EGF-induced down-regulation of the cell surface EGF-R similar to that of BNER4. EGF induced DNA synthesis more than 20-fold in BNER4, but induced only about a 1.5- to 6-fold increase in the middle T antigen- and v-src-transfectants. EGF-Rs of the middle T antigen-transfectants were metabolically stable in the presence of EGF in comparison with their parental BNER4 cells. EGF-Rs of BNER4 cells degraded with half-lives of about 2 h in the presence of EGF, but those of the middle T antigen transformants were found to be highly stabilized in the presence of EGF. On the other hand, transfection with polyoma middle T antigen (MTAg) cDNA causes malignant transformation of Balb/3T3 cells, but not its monensin (an ionophoric antibiotic)-resistant mutant MO-5 cells, which have no significant EGF binding activity. Transfection of human EGF-R cDNA into MO-5 leads to the expression of high levels of human EGF-R in MNER31. Unlike the polyoma MTAg transfectants of BNER4, EGF-R in polyoma MTAg cDNA-transfectants into MNER31, M31/MT-13 and M31/MT-14, were down-regulated to levels similar to those of their parental MNER31. Exposure to EGF induced a more than 10-fold increase in DNA synthesis of quiescent BNER4, MNER31, M31/MT-13, and M31/MT-14 cells. Polyoma middle T antigen or v-src appears to modulate EGF-induced down-regulation of EGF-R, possibly through interaction of the receptor with the viral oncogenes, and this interaction may be altered in the mutant.
UR - http://www.scopus.com/inward/record.url?scp=0027080058&partnerID=8YFLogxK
U2 - 10.1016/0014-4827(92)90021-Y
DO - 10.1016/0014-4827(92)90021-Y
M3 - Article
AN - SCOPUS:0027080058
SN - 0014-4827
VL - 203
SP - 456
EP - 465
JO - Experimental Cell Research
JF - Experimental Cell Research
IS - 2
ER -