Abstract
Today the standard treatment for wastewater is secondary treatment. This procedure cannot remove salinity or some organic micropollutants from water. In the future, a tertiary cleaning step may be required. An attractive solution is membrane processes, especially nanofiltration (NF). However, currently available NF membranes strongly reject multivalent ions, mainly due to the dielectric effect. In this work, we present a new method for preparing NF membranes, which contain negatively and positively charged domains, obtained by the combination of two polyelectrolytes with opposite charge. The negatively charged polyelectrolyte is provided in the form of particles (polystyrene sulfonate (PSSA), d ~300 nm). As a positively charged polyelectrolyte, polyethyleneimine (PEI) is used. Both buildings blocks and glycerol diglycidyl ether as crosslinker for PEI are applied to an UF membrane support in a simple one-step coating process. The membrane charge (zeta potential) and salt rejection can be adjusted using the particle concentration in the coating solution/dispersion that determine the selective layer composition. The approach reported here leads to NF membranes with a selectivity that may be controlled by a different mechanism compared to state-of-the-art membranes.
Original language | English |
---|---|
Article number | 1138 |
Journal | Membranes |
Volume | 12 |
Issue number | 11 |
DOIs | |
State | Published - 1 Nov 2022 |
Externally published | Yes |
Keywords
- charged mosaic membranes
- nanofiltration
- polyelectrolyte complex membrane
- polystyrene sulfonate particles
ASJC Scopus subject areas
- Chemical Engineering (miscellaneous)
- Process Chemistry and Technology
- Filtration and Separation