Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK cells

Edy Y. Kim, Hadas Ner-Gaon, Jack Varon, Aidan M. Cullen, Jingyu Guo, Jiyoung Choi, Diana Barragan-Bradford, Angelica Higuera, Mayra Pinilla-Vera, Samuel A.P. Short, Antonio Arciniegas-Rubio, Tomoyoshi Tamura, David E. Leaf, Rebecca M. Baron, Tal Shay, Michael B. Brenner

Research output: Contribution to journalArticlepeer-review

41 Scopus citations


As treatment of the early, inflammatory phase of sepsis improves, post-sepsis immunosuppression and secondary infection have increased in importance. How early inflammation drives immunosuppression remains unclear. Although IFN-γ typically helps microbial clearance, we found that increased plasma IFN-γ in early clinical sepsis was associated with the later development of secondary Candida infection. Consistent with this observation, we found that exogenous IFN-γ suppressed macrophage phagocytosis of zymosan in vivo, and antibody blockade of IFN-γ after endotoxemia improved survival of secondary candidemia. Transcriptomic analysis of innate lymphocytes during endotoxemia suggested that NKT cells drove IFN-γ production by NK cells via mTORC1. Activation of invariant NKT (iNKT) cells with glycolipid antigen drove immunosuppression. Deletion of iNKT cells in Cd1d-/- mice or inhibition of mTOR by rapamycin reduced immunosuppression and susceptibility to secondary Candida infection. Thus, although rapamycin is typically an immunosuppressive medication, in the context of sepsis, rapamycin has the opposite effect. These results implicated an NKT cell/mTOR/IFN-γ axis in immunosuppression following endotoxemia or sepsis. In summary, in vivo iNKT cells activated mTORC1 in NK cells to produce IFN-γ, which worsened macrophage phagocytosis, clearance of secondary Candida infection, and mortality.

Original languageEnglish
Pages (from-to)3238-3252
Number of pages15
JournalJournal of Clinical Investigation
Issue number6
StatePublished - 1 Jun 2020

ASJC Scopus subject areas

  • Medicine (all)


Dive into the research topics of 'Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK cells'. Together they form a unique fingerprint.

Cite this