Power assignment problems in wireless communication: Covering points by disks, reaching few receivers quickly, and energy-efficient travelling salesman tours

Stefan Funke, Sören Laue, Zvi Lotker, Rouven Naujoks

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In this paper, we present approximation algorithms for a variety of problems occurring in the design of energy-efficient wireless communication networks. We first study the k-station network problem, where for a set S of stations and some constant k, one wants to assign transmission powers to at most k senders such that every station in S can receive a signal from at least one sender. We give a (1 + )-approximation algorithm for this problem. The second problem deals with energy-efficient networks, allowing bounded hop multicast operations, that is given a subset C of the stations S and a designated source node s ∈ S, we want to assign powers to the sending stations, such that every node in C can be reached by a transmission from s within k hops. For this problem, we provide an algorithm which runs in time linear in S. The last problem deals with a variant of the non-metric TSP problem where the edge costs correspond to the Euclidean distances to the power of some α ≥ 1; this problem is motivated by data aggregation schemes in wireless sensor networks. We provide a simple constant approximation algorithm, which improves upon previous results when 2 ≤ α ≤ 2.7.

Original languageEnglish
Pages (from-to)1028-1035
Number of pages8
JournalAd Hoc Networks
Volume9
Issue number6
DOIs
StatePublished - 1 Aug 2011

Keywords

  • Computational geometry
  • Distributed systems
  • Mobile and wireless computing

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Power assignment problems in wireless communication: Covering points by disks, reaching few receivers quickly, and energy-efficient travelling salesman tours'. Together they form a unique fingerprint.

Cite this