Abstract
In this paper, we present approximation algorithms for a variety of problems occurring in the design of energy-efficient wireless communication networks. We first study the k-station network problem, where for a set S of stations and some constant k, one wants to assign transmission powers to at most k senders such that every station in S can receive a signal from at least one sender. We give a (1 + )-approximation algorithm for this problem. The second problem deals with energy-efficient networks, allowing bounded hop multicast operations, that is given a subset C of the stations S and a designated source node s ∈ S, we want to assign powers to the sending stations, such that every node in C can be reached by a transmission from s within k hops. For this problem, we provide an algorithm which runs in time linear in S. The last problem deals with a variant of the non-metric TSP problem where the edge costs correspond to the Euclidean distances to the power of some α ≥ 1; this problem is motivated by data aggregation schemes in wireless sensor networks. We provide a simple constant approximation algorithm, which improves upon previous results when 2 ≤ α ≤ 2.7.
Original language | English |
---|---|
Pages (from-to) | 1028-1035 |
Number of pages | 8 |
Journal | Ad Hoc Networks |
Volume | 9 |
Issue number | 6 |
DOIs | |
State | Published - 1 Aug 2011 |
Keywords
- Computational geometry
- Distributed systems
- Mobile and wireless computing
ASJC Scopus subject areas
- Software
- Hardware and Architecture
- Computer Networks and Communications