Precise dynamic turning of a 10 cm legged robot on a low friction surface using a tail

N. J. Kohut, A. O. Pullin, D. W. Haldane, D. Zarrouk, R. S. Fearing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

59 Scopus citations

Abstract

For maximum maneuverability, terrestrial robots need to be able to turn precisely, quickly, and with a small radius. Previous efforts at turning in legged robots primarily have used leg force or velocity modulation. We developed a palm-sized legged robot, called TAYLRoACH. The tailed robot was able to make rapid, precise turns using only the actuation of a tail appendage. By rapidly rotating the tail as the robot runs forward, the robot was able to make sudden 90° turns at 360 °s-1. Unlike other robots, this is done with almost no change in its running speed. We have also modeled the dynamics of this maneuver, to examine how features, such as tail length and mass, affect the robot's turning ability. This approach has produced turns with a radius of 0.4 body lengths at 3.2 body lengths per second running speed. Using gyro feedback and bang-bang control, we achieve an accuracy of ± 5° for a 60° turn.

Original languageEnglish
Title of host publication2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Pages3299-3306
Number of pages8
DOIs
StatePublished - 14 Nov 2013
Externally publishedYes
Event2013 IEEE International Conference on Robotics and Automation, ICRA 2013 - Karlsruhe, Germany
Duration: 6 May 201310 May 2013

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Country/TerritoryGermany
CityKarlsruhe
Period6/05/1310/05/13

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Precise dynamic turning of a 10 cm legged robot on a low friction surface using a tail'. Together they form a unique fingerprint.

Cite this