Predicting and improving patient-level antibiotic adherence

Isabelle Rao, Adir Shaham, Amir Yavneh, Dor Kahana, Itai Ashlagi, Margaret L. Brandeau, Dan Yamin

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Low adherence to prescribed medications causes substantial health and economic burden. We analyzed primary data from electronic medical records of 250,000 random patients from Israel’s Maccabi Healthcare services from 2007 to 2017 to predict whether a patient will purchase a prescribed antibiotic. We developed a decision model to evaluate whether an intervention to improve purchasing adherence is warranted for the patient, considering the cost of the intervention and the cost of non-adherence. The best performing prediction model achieved an average area under the receiver operating characteristic curve (AUC) of 0.684, with 82% accuracy in detecting individuals who had less than 50% chance of purchasing a prescribed drug. Using the decision model, an adherence intervention targeted to patients whose predicted purchasing probability is below a specified threshold can increase the number of prescriptions filled while generating significant savings compared to no intervention – on the order of 6.4% savings and 4.0% more prescriptions filled for our dataset. We conclude that analysis of large-scale patient data from electronic medical records can help predict the probability that a patient will purchase a prescribed antibiotic and can provide real-time predictions to physicians, who can then counsel the patient about medication importance. More broadly, in-depth analysis of patient-level data can help shape the next generation of personalized interventions.

Original languageEnglish
Pages (from-to)507-519
Number of pages13
JournalHealth Care Management Science
Volume23
Issue number4
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

Keywords

  • Decision model
  • Machine learning
  • Medication adherence
  • Prediction

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Health Professions

Fingerprint

Dive into the research topics of 'Predicting and improving patient-level antibiotic adherence'. Together they form a unique fingerprint.

Cite this