Abstract
Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 3′ untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 3′ UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 3′ UTR is more accessible to mediators that promote its interaction with the basal translation components at the 5′ end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 5′ UTR, since a hairpin structure abolishes expression of a fused reporter gene. Published by Cold Spring Harbor Laboratory Press.
Original language | English |
---|---|
Pages (from-to) | 364-374 |
Number of pages | 11 |
Journal | RNA |
Volume | 16 |
Issue number | 2 |
DOIs | |
State | Published - 1 Feb 2010 |
Keywords
- 3′ UTR
- Hsp83
- Leishmania
- Polypyrimidine tract
- Scanning of 5′ UTR
- Translation regulation
ASJC Scopus subject areas
- Molecular Biology