Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamase Producing Enterobacterales in Healthy Community Dogs in Israel

Anat Shnaiderman-Torban, Shiri Navon-Venezia, Hadar Baron, Wiessam Abu-Ahmad, Haya Arielly, Gal Zizelski Valenci, Israel Nissan, Yossi Paitan, Amir Steinman

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Background: antimicrobial resistance is a global problem in human and veterinary medicine. We aimed to investigate the extended spectrum β-lactamase-producing Enterobacterales (ESBL-PE) gut colonization in healthy community dogs in Israel. Methods: Rectal swabs were sampled from 145 healthy dogs, enriched, plated on selective plates, sub-cultured to obtain pure cultures, and ESBL production was confirmed. Bacterial species and antibiotic susceptibility profiles were identified. WGS was performed on all of the ESBL-PE isolates and their resistomes were identified in silico. Owners’ questionnaires were collected for risk factor analysis. Results: ESBL-PE gut colonization rate was 6.2% (n = 9/145, 95% CI 2.9–11.5). Overall, ten isolates were detected (one dog had two isolates); the main species was Escherichia coli (eight isolates), belonging to diverse phylogenetic groups—B1, A and C. Two isolates were identified as Citrobacter braakii, and C. portucalensis. A phylogenetic analysis indicated that all of the isolates were genetically unrelated and sporadic. The isolates possessed diverse ESBL genes and antibiotic-resistance gene content, suggesting independent ESBL spread. In a multivariable risk factor analysis, coprophagia was identified as a risk factor for ESBL-PE gut colonization (p = 0.048, aOR = 4.408, 95% CI 1.014–19.169). Conclusions: healthy community dogs may be colonized with ESBL-PE MDR strains, some of which were previously reported in humans, that carry wide and diverse resistomes and may serve as a possible source for AMR.

Original languageEnglish
Article number1069
Issue number8
StatePublished - 1 Aug 2022
Externally publishedYes


  • ESBL
  • Enterobacterales
  • antibiotic resistance
  • coprophagia
  • dogs

ASJC Scopus subject areas

  • Microbiology (medical)
  • Infectious Diseases
  • Pharmacology (medical)
  • Biochemistry
  • Pharmacology, Toxicology and Pharmaceutics (all)
  • Microbiology


Dive into the research topics of 'Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamase Producing Enterobacterales in Healthy Community Dogs in Israel'. Together they form a unique fingerprint.

Cite this