Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains

Arik Yochelis, Moshe Sheintuch

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Pattern formation mechanisms of a reaction-diffusion-advection system, with one diffusivity, differential advection, and (Robin) boundary conditions of Danckwerts type, are being studied. Pattern selection requires mapping the domains of coexistence and stability of propagating or stationary nonuniform solutions, which for the general case of far from instability onsets, is conducted using spatial dynamics and numerical continuations. The selection is determined by the boundary conditions which either preserve or destroy the translational symmetry of the model. Accordingly, we explain the criterion and the properties of stationary periodic states if the system is bounded and show that propagation of nonlinear waves (including solitary) against the advective flow corresponds to coexisting family that emerges nonlinearly from a distinct oscillatory Hopf instability. Consequently, the resulting pattern selection is qualitatively different from the symmetric finite wavenumber Turing or Hopf instabilities.

Original languageEnglish
Article number056201
JournalPhysical Review E
Volume80
Issue number5
DOIs
StatePublished - 2 Nov 2009
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains'. Together they form a unique fingerprint.

Cite this