Abstract
Trisoctahedral (TOH) shaped gold (Au) nano-crystals (NCs) have emerged as a new class of metal nanoparticles (MNPs) due to their superior catalytic and surface enhanced Raman scattering (SERS) activities caused by the presence of high density of atomic steps and dangling bonds on their high-index facets. We examine the radiative localized surface plasmon resonance (LSPR) modes of an isolated single TOH Au NC using cathodoluminescence (CL), with high resolution spatial information on the local density of optical states (LDOS) across the visible spectral range. Further, we show pronounced enhancement in the Raman scattering by performing Raman spectroscopic measurements on Rhodamine 6G (R6G)-covered TOH Au NPs aggregates on a Si substrate. We believe that the hot spots between two adjacent MNP surfaces ("nanogaps") can be significantly stronger than single particle LSPRs. Such "nanogaps" hot spots may have crucial role on the substantial SERS enhancement observed in this report. Consequently, the present study indicates that MNPs aggregates are highly desirable than individual plasmonic nanoparticles for possible applications in SERS based biosensing.
Original language | English |
---|---|
Pages (from-to) | 27003-27012 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry C |
Volume | 120 |
Issue number | 47 |
DOIs | |
State | Published - 1 Dec 2016 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films