TY - JOUR
T1 - Programmable precise kinetic control over crystal phase, size, and equilibrium in spontaneous metathesis reaction for Cs-Pb-Br nanostructure patterns at room temperature
AU - Piotrowski, Marek
AU - Ge, Zhongsheng
AU - Wang, Yixi
AU - Bandela, Anil Kumar
AU - Thumu, Udayabhaskararao
N1 - Publisher Copyright:
© 2022 The Royal Society of Chemistry.
PY - 2022/10/11
Y1 - 2022/10/11
N2 - Growth kinetics involved in spontaneous random clustering of perovskite precursors to a particular cesium-lead-bromide (Cs-Pb-Br) nanocrystal (NC) is a poorly understood phenomenon and its spectroscopic investigation is highly challenging. There is scarcely any method that has been optimized yet in which perovskites and their related NCs of a particular size can be grown, viewed, or tuned to another by reaction handling. Here, for the first time, we shed light on the largely overlooked process of growth kinetics of these transformations throughout the reaction trajectory of anionic [PbBrx]n− crystallization dictated by Cs+ cation and report a simple and direct approach to control the metathesis reaction between two precursors (specifically Cs+- and PbBr2-associated oligomeric complexes) in one solvent at room temperature to monitor the NC growth characteristics in a stepwise manner even in the early stages of nucleation. Altering the molar ratio of the two precursors up to a factor of 10 leads to the formation of three prominent phases (CsPbBr3, Cs4PbBr6, CsBr) as dictated by Cs+ to trigger distinct morphological forms (nanobelts, nanoplatelets, rhombohedral NCs, pseudo-rhombic NCs, spherical CsBr NCs, cubic CsBr NCs) including a transient phase that is formed out of linearly self-assembled CsPbBr3 clusters. Our results pave the way towards understanding spontaneous crystallization to develop well-defined, hassle-free routes for diverse perovskite NCs in a simple yet controlled manner.
AB - Growth kinetics involved in spontaneous random clustering of perovskite precursors to a particular cesium-lead-bromide (Cs-Pb-Br) nanocrystal (NC) is a poorly understood phenomenon and its spectroscopic investigation is highly challenging. There is scarcely any method that has been optimized yet in which perovskites and their related NCs of a particular size can be grown, viewed, or tuned to another by reaction handling. Here, for the first time, we shed light on the largely overlooked process of growth kinetics of these transformations throughout the reaction trajectory of anionic [PbBrx]n− crystallization dictated by Cs+ cation and report a simple and direct approach to control the metathesis reaction between two precursors (specifically Cs+- and PbBr2-associated oligomeric complexes) in one solvent at room temperature to monitor the NC growth characteristics in a stepwise manner even in the early stages of nucleation. Altering the molar ratio of the two precursors up to a factor of 10 leads to the formation of three prominent phases (CsPbBr3, Cs4PbBr6, CsBr) as dictated by Cs+ to trigger distinct morphological forms (nanobelts, nanoplatelets, rhombohedral NCs, pseudo-rhombic NCs, spherical CsBr NCs, cubic CsBr NCs) including a transient phase that is formed out of linearly self-assembled CsPbBr3 clusters. Our results pave the way towards understanding spontaneous crystallization to develop well-defined, hassle-free routes for diverse perovskite NCs in a simple yet controlled manner.
UR - http://www.scopus.com/inward/record.url?scp=85141542818&partnerID=8YFLogxK
U2 - 10.1039/d2nr04102b
DO - 10.1039/d2nr04102b
M3 - Article
C2 - 36300506
AN - SCOPUS:85141542818
SN - 2040-3364
VL - 17
JO - Nanoscale
JF - Nanoscale
ER -