Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes

Assaf Rudich, Amir Tlrosh, Ruth Potashnik, Rina Hemi, Hannah Kanety, Nava Bashan

Research output: Contribution to journalArticlepeer-review

398 Scopus citations


Prolonged exposure of 3T3-L1 adipocytes to micromolar concentrations of H2O2 results in an impaired response to the acute metabolic effects of insulin. In this study, we further characterized the mechanisms by which oxidative stress impairs insulin stimulation of glucose transport activity. Although insulin induced a 2.5-fold increase in plasma membrane GLUT4 content and a 50% reduction in its abundance in the low-density microsomal (LDM) fraction in control cells, oxidation completely prevented these responses. The net effect of insulin on 2-deoxyglucose uptake activity was reduced in oxidized cells and could be attributed to GLUT1 translocation. Insulin stimulation of insulin receptor substrate (IRS) 1 tyrosine phosphorylation and the association of IRS-1 with phosphatidylinositol (PI) 3-kinase were not impaired by oxidative stress. However, a 1.9-fold increase in the LDM content of the p85 subunit of PI 3-kinase after insulin stimulation was observed in control, but not in oxidized, cells. Moreover, although insulin induced an increase in IRS-1-associated PI 3-kinase activity in the LDM in control cells, this effect was prevented by oxidation. These findings suggest that prolonged low-grade oxidative stress impairs insulin-stimulated GLUT4 translocation, potentially by interfering with compartment-specific activation of PI 3-kinase.

Original languageEnglish
Pages (from-to)1562-1569
Number of pages8
Issue number10
StatePublished - 9 Oct 1998

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism


Dive into the research topics of 'Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes'. Together they form a unique fingerprint.

Cite this