Proton-coupled electron transfer from photo-excited CdS nanoparticles

Marina Saganovich, Eyal Gadot, Manoj Raula, Ira A. Weinstock

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Polyoxometalate (POM) cluster anions form monolayers on metal(0) nanoparticles (NPs) in water, serve as protecting ligands for binary-salt nanocrystals (such as AgCl), and as covalently attached ligands on anatase TiO2 nanocrystals. We now show that the lacunary-Keggin ion [α-AlW11O39]9− (1) binds strongly to Cd2+ in water, providing control over the growth and stability of CdS nanoparticles (NPs) that form upon addition of sulfide. When reduced by a single electron, the already highly negatively charged POM, 1 is protonated by water, and 1-protected CdS NPs were used as visible-light driven electron donors to assess whether combined reduction and protonation of 1 occurred via sequential electron- and proton-transfer steps (an ETPT mechanism), or simultaneously, via concerted proton-electron transfer (CPET). Comparison of the kinetic profiles for reduction of 1 in D2O and in H2O showed the absence of a kinetic isotopic effect (KIE), characteristic of ETPT mechanisms.

Original languageEnglish
Pages (from-to)2012-2024
Number of pages13
JournalJournal of Coordination Chemistry
Issue number11-13
StatePublished - 3 Jul 2018


  • CdS
  • Polyoxometalate
  • electron transfer

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Materials Chemistry


Dive into the research topics of 'Proton-coupled electron transfer from photo-excited CdS nanoparticles'. Together they form a unique fingerprint.

Cite this