TY - JOUR
T1 - Pyrovanadolysis, a pyrophosphorolysis-like reaction mediated by pyrovanadate, Mn 2+, and DNA polymerase of bacteriophage T7
AU - Akabayov, Barak
AU - Kulczyk, Arkadiusz W.
AU - Akabayov, Sabine R.
AU - Theile, Christopher
AU - McLaughlin, Larry W.
AU - Beauchamp, Benjamin
AU - Van Oijen, Antoine M.
AU - Richardson, Charles C.
PY - 2011/8/19
Y1 - 2011/8/19
N2 - DNA polymerases catalyze the 3′-5′-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PPi). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5′-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PPi, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PPi complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn2+, larger than Mg2+, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our resultsmaybe the first documentation that vanadium can substitute for phosphorus in biological processes.
AB - DNA polymerases catalyze the 3′-5′-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PPi). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5′-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PPi, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PPi complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn2+, larger than Mg2+, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our resultsmaybe the first documentation that vanadium can substitute for phosphorus in biological processes.
UR - http://www.scopus.com/inward/record.url?scp=80051677811&partnerID=8YFLogxK
U2 - 10.1074/jbc.M111.250944
DO - 10.1074/jbc.M111.250944
M3 - Article
C2 - 21697085
AN - SCOPUS:80051677811
SN - 0021-9258
VL - 286
SP - 29146
EP - 29157
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 33
ER -