Quantum noise and superluminal propagation

Bilha Segev, Peter W. Milonni, James F. Babb, Raymond Y. Chiao

Research output: Contribution to journalArticlepeer-review

Abstract

Causal “superluminal” effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an “optical tachyon.” Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being “exponentially large.” We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small.

Original languageEnglish
Pages (from-to)15
Number of pages1
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume62
Issue number2
DOIs
StatePublished - 1 Jan 2000

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Quantum noise and superluminal propagation'. Together they form a unique fingerprint.

Cite this