Radar target classification using Doppler signatures of human locomotion models

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

The problem of target classification for ground surveillance Doppler radars is addressed. Two sources of knowledge are presented and incorporated within the classification algorithms: 1) statistical knowledge on radar target echo features, and 2) physical knowledge, represented via the locomotion models for different targets. The statistical knowledge is represented by distribution models whose parameters are estimated using a collected database. The physical knowledge is represented by target locomotion and radar measurements models. Various concepts to incorporate these sources of knowledge are presented. These concepts are tested using real data of radar echo records, which include three target classes: one person, two persons and vehicle. A combined approach, which implements both statistical and physical prior knowledge provides the best classification performance, and it achieves a classification rate of 99% in the three-class problem in high signal-to-noise conditions.

Original languageEnglish
Pages (from-to)1510-1522
Number of pages13
JournalIEEE Transactions on Aerospace and Electronic Systems
Volume43
Issue number4
DOIs
StatePublished - 1 Oct 2007

ASJC Scopus subject areas

  • Aerospace Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Radar target classification using Doppler signatures of human locomotion models'. Together they form a unique fingerprint.

Cite this