Ramsey spanning trees and their applications

Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, Ofer Neiman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

The metric Ramsey problem asks for the largest subset S of a metric space that can be embedded into an ultrametric (more generally into a Hilbert space) with a given distortion. Study of this problem was motivated as a non-linear version of Dvoretzky theorem. Mendel and Naor [MN07] devised the so called Ramsey Partitions to address this problem, and showed the algorithmic applications of their techniques to approximate distance oracles and ranking problems. In this paper we study the natural extension of the metric Ramsey problem to graphs, and introduce the notion of Ramsey Spanning Trees. We ask for the largest subset S V of a given graph G = (V;E), such that there exists a spanning tree of G that has small stretch for S. Applied iteratively, this provides a small collection of spanning trees, such that each vertex has a tree providing low stretch paths to all other vertices. The union of these trees serves as a special type of spanner, a tree-padding spanner. We use this spanner to devise the first compact stateless routing scheme with O(1) routing decision time, and labels which are much shorter than in all currently existing schemes. We first revisit the metric Ramsey problem, and provide a new deterministic construction. We prove that for every k, any n-point metric space has a subset S of size at least n1-1=k which embeds into an ultrametric with distortion 8k. We use this result to obtain the state-of-the-art deterministic construction of a distance oracle. Building on this result, we prove that for every k, any n-vertex graph G = (V;E) has a subset S of size at least n1-1=k, and a spanning tree of G, that has stretch O(k log log n) between any point in S and any point in V .

Original languageEnglish
Title of host publication29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
EditorsArtur Czumaj
PublisherAssociation for Computing Machinery
Pages1650-1664
Number of pages15
ISBN (Electronic)9781611975031
DOIs
StatePublished - 1 Jan 2018
Event29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 - New Orleans, United States
Duration: 7 Jan 201810 Jan 2018

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
Country/TerritoryUnited States
CityNew Orleans
Period7/01/1810/01/18

ASJC Scopus subject areas

  • Software
  • General Mathematics

Fingerprint

Dive into the research topics of 'Ramsey spanning trees and their applications'. Together they form a unique fingerprint.

Cite this