Randomized admission policy for efficient top-k, frequency, and volume estimation

Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Roy Friedman, Yaron Kassner

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Network management protocols often require timely and meaningful insight about per flow network traffic. This paper introduces Randomized Admission Policy RAP -a novel algorithm for the frequency, top-k, and byte volume estimation problems, which are fundamental in network monitoring. We demonstrate space reductions compared to the alternatives, for the frequency estimation problem, by a factor of up to 32 on real packet traces and up to 128 on heavy-tailed workloads. For top-$k$ identification, RAP exhibits memory savings by a factor of between 4 and 64 depending on the workloads' skewness. These empirical results are backed by formal analysis, indicating the asymptotic space improvement of our probabilistic admission approach. In Addition, we present d-way RAP, a hardware friendly variant of RAP that empirically maintains its space and accuracy benefits.

Original languageEnglish
Article number3370594
Pages (from-to)1432-1445
Number of pages14
JournalIEEE/ACM Transactions on Networking
Volume27
Issue number4
DOIs
StatePublished - 1 Aug 2019

Keywords

  • Algorithm design and analysis
  • Approximation algorithms

Fingerprint

Dive into the research topics of 'Randomized admission policy for efficient top-k, frequency, and volume estimation'. Together they form a unique fingerprint.

Cite this