Abstract
The Thick Gaseous Electron Multiplier (THGEM) is a simple and robust electrode suitable for large area detectors. In this work the results of extensive comparative studies of the physical properties of different THGEM-based structures are reviewed. The focus is on newly suggested THGEM-like WELL configurations as well as on recently developed characterization methods. The WELL structures are single-sided THGEM electrodes directly coupled to different anode readout electrodes; they differ by the coupling concept of the bottom THGEM electrode to the metallic readout pads. The results are compared to that of traditional double-sided THGEM electrodes followed by induction gaps - in some cases with moderate additional multiplication within the gap. We compare the different configurations in terms of gain, avalanche extension, discharge-rate and magnitude as well as rate capabilities over a broad dynamic range - exploiting a method that mimics highly ionizing particles in the laboratory. We report on recent studies of avalanche distribution in THGEM holes using optical readout.
Original language | English |
---|---|
Article number | C12012 |
Journal | Journal of Instrumentation |
Volume | 8 |
Issue number | 12 |
DOIs | |
State | Published - 1 Dec 2013 |
Externally published | Yes |
Keywords
- Electron multipliers (gas)
- Gaseous detectors
- Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc)
ASJC Scopus subject areas
- Instrumentation
- Mathematical Physics