Reconstitution of expression of H-2K region-encoded murine MHC class I glycoproteins in MHC class I-deficient B16BL6 melanoma cells affects the expression and function of antigen-processing machinery

Sylvia Tsory, Sigal Kellman-Pressman, Daniel Fishman, Shraga Segal

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We have recently reported that reconstitution of expression of major histocompatibility complex (MHC) class I glycoproteins in MHC-deficient and highly metastatic B16BL6 melanoma cells attenuates their malignant capacities by modulation of compartmentalization and functions of cell membrane receptors for growth factors [Assa-Kunik E, et al. J Immunol 2003;171:2945-52]. Our present study provides evidence that re-expression of an H-2K MHC class I-encoding gene in these cells also augments the expression of the Tap-2 peptide transporter and the inducible proteasome subunits, i.e. Lmp-2, Lmp-7 and Lmp-10. Up-regulation of inducible proteasome subunits was also followed by a significant changed in the proteolytic activity of the proteasome complex. We suggest that, in addition to providing a framework for proper presentation of antigenic peptides, MHC class I glycoproteins may regulate the immune response by modulating the expression and function of other genes, whose products are essential for proper antigen processing and presentation.

Original languageEnglish
Pages (from-to)237-240
Number of pages4
JournalImmunology Letters
Volume102
Issue number2
DOIs
StatePublished - 15 Feb 2006

Keywords

  • MHC
  • Melanoma
  • Proteasome

Fingerprint

Dive into the research topics of 'Reconstitution of expression of H-2K region-encoded murine MHC class I glycoproteins in MHC class I-deficient B16BL6 melanoma cells affects the expression and function of antigen-processing machinery'. Together they form a unique fingerprint.

Cite this