TY - JOUR
T1 - Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii
AU - Tozik, Irit
AU - Huang, Qiaojia
AU - Zwieb, Christian
AU - Eichler, Jerry
N1 - Funding Information:
The authors wish to thank Gabriela Ring for gifts of the H.volcanii S100 fraction and ribosomes. C.Z. is supported by NIH grant GM-49034. J.E. is supported by the Israel Science Foundation (grant 291/99) and is the incumbent of the Murray Shusterman Career Development Chair in Microbiology.
PY - 2002/10/1
Y1 - 2002/10/1
N2 - The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukeryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 of the halophilic archaeon Haloferax volcanii have been expressed and purified, and used to reconstitute the ternary SRP complex. The availability of SRP components from a haloarchaeon offers insight into the structure, assembly and function of this ribonucleoprotein complex at saturating salt conditions. While the amino acid sequences of H.volcanii SRP19 and SRP54 are modified presumably as an adaptation to their saline surroundings, the interactions between these halophilic SRP components and SRP RNA appear conserved, with the possibility of a few exceptions. Indeed, the H.volcanii SRP can assemble in the absence of high salt. As reported with other archaeal SRPs, the limited binding of H.volcanii SRP54 to SRP RNA is enhanced in the presence of SRP19. Finally, immunolocalization reveals that H.volcanii SRP54 is found in the cytosolic fraction, where it is associated with the ribosomal fraction of the cell.
AB - The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukeryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 of the halophilic archaeon Haloferax volcanii have been expressed and purified, and used to reconstitute the ternary SRP complex. The availability of SRP components from a haloarchaeon offers insight into the structure, assembly and function of this ribonucleoprotein complex at saturating salt conditions. While the amino acid sequences of H.volcanii SRP19 and SRP54 are modified presumably as an adaptation to their saline surroundings, the interactions between these halophilic SRP components and SRP RNA appear conserved, with the possibility of a few exceptions. Indeed, the H.volcanii SRP can assemble in the absence of high salt. As reported with other archaeal SRPs, the limited binding of H.volcanii SRP54 to SRP RNA is enhanced in the presence of SRP19. Finally, immunolocalization reveals that H.volcanii SRP54 is found in the cytosolic fraction, where it is associated with the ribosomal fraction of the cell.
UR - http://www.scopus.com/inward/record.url?scp=0036799450&partnerID=8YFLogxK
U2 - 10.1093/nar/gkf548
DO - 10.1093/nar/gkf548
M3 - Review article
C2 - 12364595
AN - SCOPUS:0036799450
SN - 0305-1048
VL - 30
SP - 4166
EP - 4175
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 19
ER -