TY - JOUR
T1 - Reduction of O2 to superoxide anion (O2.-) in water by heteropolytungstate cluster-anions
AU - Geletii, Yurii V.
AU - Hill, Craig L.
AU - Atalla, Rajai H.
AU - Weinstock, Ira A.
PY - 2006/12/27
Y1 - 2006/12/27
N2 - Fundamental information concerning the mechanism of electron transfer from reduced heteropolytungstates (POMred) to O2, and the effect of donor-ion charge on reduction of O2 to superoxide anion (O2.-), is obtained using an isostructural series of 1e--reduced donors: α-Xn+W12O 40(9-n)-, Xn+ = Al3+, Si 4+, P5+. For all three, a single rate expression is observed: -d[POMred]/dt = 2k12[POMred][O 2], where k12 is for the rate-limiting electron transfer from POMred to O2. At pH 2 (175 mM ionic strength), k 12 increases from 1.4 ± 0.2 to 8.5 ± 1 to 24 ± 2 M-1s-1 as Xn+ is varied from P5+ (3red) to Si4+ (2red) to Al3+ (1red). Variable-pH data (for 1red) and solvent-kinetic isotope (KIE = kH/kD) data (all three ions) indicate that protonated superoxide (HO2•) is formed in two steps-electron transfer, followed by proton transfer (ET-PT mechanism)-rather than via simultaneous proton-coupled electron transfer (PCET). Support for an outersphere mechanism is provided by agreement between experimental k12 values and those calculated using the Marcus cross relation. Further evidence is provided by the small variation in k12 observed when Xn+ is changed from P5+ to Si4+ to Al3+, and the driving force for formation of O2.- (aq), which increases as cluster-anion charge becomes more negative, increases by nearly +0.4 V (a decrease of >9 kcal mol-1 in ΔG°). The weak dependence of k12 on POM reduction potentials reflects the outersphere ET-PT mechanism: as the anions become more negatively charged, the "successor-complex" ion pairs are subject to larger anion-anion repulsions, in the order [(3OX3-)(O2 .-)]4- < [(2OX4-)(O 2.-)]5- < [(1OX 5-)(O2.-)]6-. This reveals an inherent limitation to the use of heteropolytungstate charge and reduction potential to control rates of electron transfer to O2 under turnover conditions in catalysis.
AB - Fundamental information concerning the mechanism of electron transfer from reduced heteropolytungstates (POMred) to O2, and the effect of donor-ion charge on reduction of O2 to superoxide anion (O2.-), is obtained using an isostructural series of 1e--reduced donors: α-Xn+W12O 40(9-n)-, Xn+ = Al3+, Si 4+, P5+. For all three, a single rate expression is observed: -d[POMred]/dt = 2k12[POMred][O 2], where k12 is for the rate-limiting electron transfer from POMred to O2. At pH 2 (175 mM ionic strength), k 12 increases from 1.4 ± 0.2 to 8.5 ± 1 to 24 ± 2 M-1s-1 as Xn+ is varied from P5+ (3red) to Si4+ (2red) to Al3+ (1red). Variable-pH data (for 1red) and solvent-kinetic isotope (KIE = kH/kD) data (all three ions) indicate that protonated superoxide (HO2•) is formed in two steps-electron transfer, followed by proton transfer (ET-PT mechanism)-rather than via simultaneous proton-coupled electron transfer (PCET). Support for an outersphere mechanism is provided by agreement between experimental k12 values and those calculated using the Marcus cross relation. Further evidence is provided by the small variation in k12 observed when Xn+ is changed from P5+ to Si4+ to Al3+, and the driving force for formation of O2.- (aq), which increases as cluster-anion charge becomes more negative, increases by nearly +0.4 V (a decrease of >9 kcal mol-1 in ΔG°). The weak dependence of k12 on POM reduction potentials reflects the outersphere ET-PT mechanism: as the anions become more negatively charged, the "successor-complex" ion pairs are subject to larger anion-anion repulsions, in the order [(3OX3-)(O2 .-)]4- < [(2OX4-)(O 2.-)]5- < [(1OX 5-)(O2.-)]6-. This reveals an inherent limitation to the use of heteropolytungstate charge and reduction potential to control rates of electron transfer to O2 under turnover conditions in catalysis.
UR - http://www.scopus.com/inward/record.url?scp=33845941436&partnerID=8YFLogxK
U2 - 10.1021/ja064244g
DO - 10.1021/ja064244g
M3 - Article
C2 - 17177455
AN - SCOPUS:33845941436
VL - 128
SP - 17033
EP - 17042
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 51
ER -