Abstract
Consider a three-point difference scheme -h-2Δ (2)yn + qn(h)yn = fn(h), n ∈ Z = {0, ± 1, ± 2,...} (1) where h ∈ (0, h 0], h0 is a given positive number, Δ (2)yn = yn+1 - 2yn + y n-1, f(h) =def {fn(h)}n∈Z ∈ L p(h),p ∈ [1, ∞), Lp(h) = { f(h): ∥ f (h) ∥ Lp(h) < ∞}, ∥f(h)∥|pL p(h) =∑n∈|f n(h)|p h. Assume that the sequence q(h) =def {qn(h)}n∈Z satisfies the a priori condition 0 ≤ qn(h) < ∞ ∀n ∈ Z, ∀h ∈ (0, h0]. We obtain criteria for the stability of scheme (1) in Lp(h), p ∈ [1, ∞).
Original language | English |
---|---|
Pages (from-to) | 487-501 |
Number of pages | 15 |
Journal | Journal of Difference Equations and Applications |
Volume | 11 |
Issue number | 6 |
DOIs | |
State | Published - 1 May 2005 |
Keywords
- Difference scheme
- Inversion problem
- Non-negative coefficients
- Sturm-Liouville equation
ASJC Scopus subject areas
- Analysis
- Algebra and Number Theory
- Applied Mathematics