Regulation of Heparanase in Diabetes-Associated Pancreatic Carcinoma

Rachel Goldberg, Amichay Meirovitz, Alexia Abecassis, Esther Hermano, Ariel M. Rubinstein, Daniela Nahmias, Albert Grinshpun, Tamar Peretz, Michael Elkin

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

While at least six types of cancer have been associated with diabetes, pancreatic ductal adenocarcinoma (PDAC) and diabetes exhibit a unique bidirectional relationship. Recent reports indicate that majority of PDAC patients display hyperglycemia, and ~50% have concurrent diabetes. In turn, hyperglycemic/diabetic state in PDAC patients fosters enhanced growth and dissemination of the tumor. Heparanase enzyme (the sole mammalian endoglycosidase degrading glycosaminoglycan heparan sulfate) is tightly implicated in PDAC progression, aggressiveness, and therapy resistance. Overexpression of heparanase is a characteristic feature of PDAC, correlating with poor prognosis. However, given the lack of heparanase expression in normal pancreatic tissue, the regulatory mechanisms responsible for induction of the enzyme in PDAC have remained largely unknown. Previously reported inducibility of heparanase gene by diabetic milieu components in several non-cancerous cell types prompted us to hypothesize that in the setting of diabetes-associated PDAC, hyperglycemic state may induce heparanase overexpression. Here, utilizing a mouse model of diet-induced metabolic syndrome/diabetes, we found accelerated PDAC progression in hyperglycemic mice, occurring along with induction of heparanase in PDAC. In vitro, we demonstrated that advanced glycation end-products (AGE), which are largely thought as oxidative derivatives resulting from chronic hyperglycemia, and the receptor for AGE (RAGE) are responsible for heparanase induction in PDAC cells. These findings underscore the new mechanism underlying preferential expression of heparanase in pancreatic cancer. Moreover, taken together with the well-established causal role of the enzyme in PDAC progression, our findings indicate that heparanase may sustain (at least in part) reciprocal causality between diabetes and pancreatic tumorigenesis.

Original languageEnglish
Article number1405
JournalFrontiers in Oncology
Volume9
DOIs
StatePublished - 10 Dec 2019
Externally publishedYes

Keywords

  • diabetes
  • extracellular matrix
  • heparanase
  • hyperglycemia
  • pancreatic carcinoma

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Regulation of Heparanase in Diabetes-Associated Pancreatic Carcinoma'. Together they form a unique fingerprint.

Cite this