## Abstract

Distribution functions of properties of critical percolation clusters are calculated using the "H-cell" real space renormalization group (RG). We consider structural properties which span two terminals on percolation clusters. These include the lengths of (minimal, average edge-to-edge, longest) self-avoiding walks, the number of the singly connected bonds, and the masses of percolation clusters, as well as of the backbone. We show that the RG corresponds to a (Galton-Watson) branching process, and apply theorems developed in the mathematical literature. We derive recursion relations for the distribution functions, and find exact functional forms for their asymptotic tail behavior at both small and large arguments. The results for the minimal paths have implications on the (multifractal) distribution of wave functions, while the singly connected bonds determine the moments of Ising correlations on these clusters. Our results compare well with existing simulation data.

Original language | English |
---|---|

Pages (from-to) | 172-184 |

Number of pages | 13 |

Journal | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |

Volume | 56 |

Issue number | 1 SUPPL. A |

DOIs | |

State | Published - 1 Jan 1997 |

Externally published | Yes |

## ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics