Représentation intégrale pour un sous-espace de Hardy de la boule de noyau reproduisant de type Nevanlinna-Pick

Translated title of the contribution: Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel

Daniel Alpay, H. Turgay Kaptanoglu

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We use the theory of Hilbert spaces of analytic functions on bounded symmetric domains in CN to obtain information on the (1/(N+1))st power of the Bergman kernel of the ball. This kernel has played recently an important and growing role in operator theory. We present several integral formulas for the Hilbert space generated by this kernel.

Translated title of the contributionIntegral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel
Original languageFrench
Pages (from-to)285-290
Number of pages6
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume333
Issue number4
DOIs
StatePublished - 15 Aug 2001

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel'. Together they form a unique fingerprint.

Cite this