TY - JOUR
T1 - Reshaping the tumor microenvironment
T2 - Extracellular vesicles as messengers of cancer cells
AU - Bhatta, Bibek
AU - Cooks, Tomer
N1 - Publisher Copyright:
© 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].
PY - 2020/11/1
Y1 - 2020/11/1
N2 - The tumor microenvironment (TME) comprises an assortment of immune and non-immune cells. The interactions between the cancer cells and their surrounding TME are known to be a cardinal factor in all stages of cancer progression, from initiation to metastasis. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are considered two of the most abundant TME members associated with poor prognosis in various cancer types. Intercellular communication between the cancer cells and TME cells might occur via direct cell-cell contact or achieved through secreted factors such as cytokines, growth factors and extracellular vesicles (EVs). EVs are released by almost every cell type and by cancer cells in particular. EVs are loaded with unique molecular cargos that might include DNA, proteins, RNA and lipids, commonly reflecting the physiological traits of their donor cells. Once released, EVs are capable of initiating short- and long-distance communication in an autocrine, paracrine and endocrine fashion. The molecular cargos within the EVs are able to impart phenotypic changes at the receiving end thus allowing EV-releasing cancer cells to deliver messages to TME cells and tighten their grasp over the cancerous tissue. In this concise review, we aim to document the bidirectional EV-based communication between cancer cell, TAMs and CAFs, tilting the balance in favor of cancer progression and metastasis.
AB - The tumor microenvironment (TME) comprises an assortment of immune and non-immune cells. The interactions between the cancer cells and their surrounding TME are known to be a cardinal factor in all stages of cancer progression, from initiation to metastasis. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are considered two of the most abundant TME members associated with poor prognosis in various cancer types. Intercellular communication between the cancer cells and TME cells might occur via direct cell-cell contact or achieved through secreted factors such as cytokines, growth factors and extracellular vesicles (EVs). EVs are released by almost every cell type and by cancer cells in particular. EVs are loaded with unique molecular cargos that might include DNA, proteins, RNA and lipids, commonly reflecting the physiological traits of their donor cells. Once released, EVs are capable of initiating short- and long-distance communication in an autocrine, paracrine and endocrine fashion. The molecular cargos within the EVs are able to impart phenotypic changes at the receiving end thus allowing EV-releasing cancer cells to deliver messages to TME cells and tighten their grasp over the cancerous tissue. In this concise review, we aim to document the bidirectional EV-based communication between cancer cell, TAMs and CAFs, tilting the balance in favor of cancer progression and metastasis.
UR - http://www.scopus.com/inward/record.url?scp=85096203156&partnerID=8YFLogxK
U2 - 10.1093/carcin/bgaa107
DO - 10.1093/carcin/bgaa107
M3 - Review article
C2 - 33047121
AN - SCOPUS:85096203156
SN - 0143-3334
VL - 41
SP - 1461
EP - 1470
JO - Carcinogenesis
JF - Carcinogenesis
IS - 11
ER -