Resolving perceptual aliasing in the presence of noisy sensors

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Agents learning to act in a partially observable domain may need to overcome the problem of perceptual aliasing - i.e., different states that appear similar but require different responses. This problem is exacerbated when the agent's sensors are noisy, i.e., sensors may produce different observations in the same state. We show that many well-known reinforcement learning methods designed to deal with perceptual aliasing, such as Utile Suffix Memory, finite size history windows, eligibility traces, and memory bits, do not handle noisy sensors well. We suggest a new algorithm, Noisy Utile Suffix Memory (NUSM), based on USM, that uses a weighted classification of observed trajectories. We compare NUSM to the above methods and show it to be more robust to noise.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 17 - Proceedings of the 2004 Conference, NIPS 2004
PublisherNeural information processing systems foundation
ISBN (Print)0262195348, 9780262195348
StatePublished - 1 Jan 2005
Event18th Annual Conference on Neural Information Processing Systems, NIPS 2004 - Vancouver, BC, Canada
Duration: 13 Dec 200416 Dec 2004

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Conference

Conference18th Annual Conference on Neural Information Processing Systems, NIPS 2004
Country/TerritoryCanada
CityVancouver, BC
Period13/12/0416/12/04

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Resolving perceptual aliasing in the presence of noisy sensors'. Together they form a unique fingerprint.

Cite this