Rich structure in the correlation matrix spectra in non-equilibrium steady states

Soham Biswas, Francois Leyvraz, Paulino Monroy Castillero, Thomas H. Seligman

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-Time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: A power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-Time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

Original languageEnglish
Article number40506
JournalScientific Reports
Volume7
DOIs
StatePublished - 17 Jan 2017
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Rich structure in the correlation matrix spectra in non-equilibrium steady states'. Together they form a unique fingerprint.

Cite this