Rn and CO2 in Depth, as a Proxy for Pre-Seismic Activity

H. Zafrir, U. Malik, E. Levintal, N. Weisbrod, Y. Ben Horin, Z. Zalevsky, N. Inbar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The method of long-term monitoring of subsurface gases in shallow to deep boreholes assumes that the climatic influence on geo-physicochemical parameters is limited since its energy decreases with the increase in thickness of the geological cover. Hence, the monitoring of radon (Rn), CO2 and other constituents above and below the water table in deep boreholes enables to eliminate the climatic-induced periodic contributions, from the residual portion of the signals that are associated with the regional geodynamic processes, as have been proved by us recently for radon (*). Monitoring of radon and CO2 at a depth of several tens of meters along the Dead Sea Fault Zone, between the Dead Sea and the Hula Valley (see map) has led to a clear discovery of the phenomenon that both gases are affected by an underground tectonic activity related to the pre-seismic processes of producing earthquakes, even if they are weak. The pre-seismic processes even if not all end with earthquakes, cause the movement of gases in the subsurface geologic media and creating non-periodic signals that are wider than 20 to 24 hours. Hence, monitoring of any other natural gas at depth may show similar expansion signal and may serve as a precursor for earthquakes. The necessary conditions needed to explore anomalous signals of gases that induced by pre-seismic processes at the depth, as accumulation and relaxation of lithospheric stress and strain, are: a) setup of a monitoring system within boreholes airspace, drilled to active faults, b) verify that there is at least one gas with concentration level few times above the conventional background level of the regional subsurface content, c) utilizing high sensitive detectors to recover changes in the gas content, with detection limit of few percent of the local average(As an example: for radon, the required content is at least 1kBq/m3 and the required sensitivity is better than 5%).(*) Zafrir, H., Ben Horin Y., Malik, U., Chemo, C., and Zalevsky, Z.,2016, Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor, J.Geophys. Res. Solid Earth, 121, 6346-6364, doi: 10.1002/2016JB013033.
Original languageEnglish
Title of host publicationAmerican Geophysical Union, Fall Meeting 2019
Volume11
StatePublished - 1 Dec 2019

Keywords

  • 4315 Monitoring
  • forecasting
  • prediction
  • NATURAL HAZARDS
  • 7212 Earthquake ground motions and engineering seismology
  • SEISMOLOGY
  • 7294 Seismic instruments and networks
  • 8194 Instruments and techniques
  • TECTONOPHYSICS

Fingerprint

Dive into the research topics of 'Rn and CO2 in Depth, as a Proxy for Pre-Seismic Activity'. Together they form a unique fingerprint.

Cite this