TY - JOUR
T1 - RNAslider
T2 - A faster engine for consecutive windows folding and its application to the analysis of genomic folding asymmetry
AU - Horesh, Yair
AU - Wexler, Ydo
AU - Lebenthal, Ilana
AU - Ziv-Ukelson, Michal
AU - Unger, Ron
N1 - Funding Information:
This research was supported by a grant 3/2559 from the Israeli Ministry of Science and Technology to R.U. We are indebted to the anonymous referees for suggesting the dinucleotide shuffling experiment and many other valuable suggestions.
PY - 2009/3/4
Y1 - 2009/3/4
N2 - Background: Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L < N), the consecutive windows folding problem is to compute the minimal free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described. Results: Here, we describe and implement an O(NLψ(L)) engine for the consecutive windows folding problem, where ψ(L) is shown to converge to O(1) under the assumption of a standard probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. Conclusion: The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.
AB - Background: Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L < N), the consecutive windows folding problem is to compute the minimal free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described. Results: Here, we describe and implement an O(NLψ(L)) engine for the consecutive windows folding problem, where ψ(L) is shown to converge to O(1) under the assumption of a standard probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. Conclusion: The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale.
UR - http://www.scopus.com/inward/record.url?scp=65849245711&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-10-76
DO - 10.1186/1471-2105-10-76
M3 - Article
C2 - 19257906
AN - SCOPUS:65849245711
SN - 1471-2105
VL - 10
JO - BMC Bioinformatics
JF - BMC Bioinformatics
M1 - 76
ER -