TY - JOUR
T1 - Robust multi-agent path finding and executing
AU - Atzmon, Dor
AU - Stern, Roni
AU - Felner, Ariel
AU - Wagner, Glenn
AU - Barták, Roman
AU - Zhou, Neng Fa
N1 - Publisher Copyright:
© 2020 AI Access Foundation. All rights reserved.
PY - 2020/3/12
Y1 - 2020/3/12
N2 - Multi-agent path-finding (MAPF) is the problem of finding a plan for moving a set of agents from their initial locations to their goals without collisions. Following this plan, however, may not be possible due to unexpected events that delay some of the agents. In this work, we propose a holistic solution for MAPF that is robust to such unexpected delays. First, we introduce the notion of a k-robust MAPF plan, which is a plan that can be executed even if a limited number (k) of delays occur. We propose sufficient and required conditions for finding a k-robust plan, and show how to convert several MAPF solvers to find such plans. Then, we propose several robust execution policies. An execution policy is a policy for agents executing a MAPF plan. An execution policy is robust if following it guarantees that the agents reach their goals even if they encounter unexpected delays. Several classes of such robust execution policies are proposed and evaluated experimentally. Finally, we present robust execution policies for cases where communication between the agents may also be delayed. We performed an extensive experimental evaluation in which we compared different algorithms for finding robust MAPF plans, compared different robust execution policies, and studied the interplay between having a robust plan and the performance when using a robust execution policy.
AB - Multi-agent path-finding (MAPF) is the problem of finding a plan for moving a set of agents from their initial locations to their goals without collisions. Following this plan, however, may not be possible due to unexpected events that delay some of the agents. In this work, we propose a holistic solution for MAPF that is robust to such unexpected delays. First, we introduce the notion of a k-robust MAPF plan, which is a plan that can be executed even if a limited number (k) of delays occur. We propose sufficient and required conditions for finding a k-robust plan, and show how to convert several MAPF solvers to find such plans. Then, we propose several robust execution policies. An execution policy is a policy for agents executing a MAPF plan. An execution policy is robust if following it guarantees that the agents reach their goals even if they encounter unexpected delays. Several classes of such robust execution policies are proposed and evaluated experimentally. Finally, we present robust execution policies for cases where communication between the agents may also be delayed. We performed an extensive experimental evaluation in which we compared different algorithms for finding robust MAPF plans, compared different robust execution policies, and studied the interplay between having a robust plan and the performance when using a robust execution policy.
UR - http://www.scopus.com/inward/record.url?scp=85090556103&partnerID=8YFLogxK
U2 - 10.1613/JAIR.1.11734
DO - 10.1613/JAIR.1.11734
M3 - Article
AN - SCOPUS:85090556103
SN - 1076-9757
VL - 67
SP - 549
EP - 579
JO - Journal Of Artificial Intelligence Research
JF - Journal Of Artificial Intelligence Research
ER -