TY - JOUR
T1 - Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein
AU - Bershtein, Shimon
AU - Segal, Michal
AU - Bekerman, Roy
AU - Tokuriki, Nobuhiko
AU - Tawfik, Dan S.
PY - 2006/12/14
Y1 - 2006/12/14
N2 - The distribution of fitness effects of protein mutations is still unknown. Of particular interest is whether accumulating deleterious mutations interact, and how the resulting epistatic effects shape the protein's fitness landscape. Here we apply a model system in which bacterial fitness correlates with the enzymatic activity of TEM-1 β-lactamase (antibiotic degradation). Subjecting TEM-1 to random mutational drift and purifying selection (to purge deleterious mutations) produced changes in its fitness landscape indicative of negative epistasis; that is, the combined deleterious effects of mutations were, on average, larger than expected from the multiplication of their individual effects. As observed in computational systems, negative epistasis was tightly associated with higher tolerance to mutations (robustness). Thus, under a low selection pressure, a large fraction of mutations was initially tolerated (high robustness), but as mutations accumulated, their fitness toll increased, resulting in the observed negative epistasis. These findings, supported by FoldX stability computations of the mutational effects, prompt a new model in which the mutational robustness (or neutrality) observed in proteins, and other biological systems, is due primarily to a stability margin, or threshold, that buffers the deleterious physico-chemical effects of mutations on fitness. Threshold robustness is inherently epistatic - once the stability threshold is exhausted, the deleterious effects of mutations become fully pronounced, thereby making proteins far less robust than generally assumed.
AB - The distribution of fitness effects of protein mutations is still unknown. Of particular interest is whether accumulating deleterious mutations interact, and how the resulting epistatic effects shape the protein's fitness landscape. Here we apply a model system in which bacterial fitness correlates with the enzymatic activity of TEM-1 β-lactamase (antibiotic degradation). Subjecting TEM-1 to random mutational drift and purifying selection (to purge deleterious mutations) produced changes in its fitness landscape indicative of negative epistasis; that is, the combined deleterious effects of mutations were, on average, larger than expected from the multiplication of their individual effects. As observed in computational systems, negative epistasis was tightly associated with higher tolerance to mutations (robustness). Thus, under a low selection pressure, a large fraction of mutations was initially tolerated (high robustness), but as mutations accumulated, their fitness toll increased, resulting in the observed negative epistasis. These findings, supported by FoldX stability computations of the mutational effects, prompt a new model in which the mutational robustness (or neutrality) observed in proteins, and other biological systems, is due primarily to a stability margin, or threshold, that buffers the deleterious physico-chemical effects of mutations on fitness. Threshold robustness is inherently epistatic - once the stability threshold is exhausted, the deleterious effects of mutations become fully pronounced, thereby making proteins far less robust than generally assumed.
UR - http://www.scopus.com/inward/record.url?scp=33845864966&partnerID=8YFLogxK
U2 - 10.1038/nature05385
DO - 10.1038/nature05385
M3 - Article
C2 - 17122770
AN - SCOPUS:33845864966
SN - 0028-0836
VL - 444
SP - 929
EP - 932
JO - Nature
JF - Nature
IS - 7121
ER -